Lizenz: Creative Commons Namensnennung 4.0 International PDF - Veröffentlichte Version (469kB) |
- URN zum Zitieren dieses Dokuments:
- urn:nbn:de:bvb:355-epub-583186
- DOI zum Zitieren dieses Dokuments:
- 10.5283/epub.58318
Zusammenfassung
This paper quantifies the intricacy, i.e., non-linearity and interactions of predictor variables, in explaining cryptocurrency returns. Using data from several thousand cryptocurrencies spanning 2014 to 2022, we observe a notably high level of intricacy. This provides a quantitative measure why linear models are often outperformed by machine learning algorithms in predicting cryptocurrency ...
Nur für Besitzer und Autoren: Kontrollseite des Eintrags