Startseite UR

Handling imperfection: A taxonomy for machine learning on data with data quality defects

URN zum Zitieren dieses Dokuments:
urn:nbn:de:bvb:355-epub-769086
DOI zum Zitieren dieses Dokuments:
10.5283/epub.76908
Hagn, Michael ; Heinrich, Bernd ; Krapf, Thomas ; Schiller, Alexander
[img]Lizenz: Creative Commons Namensnennung 4.0 International
PDF - Veröffentlichte Version
(2MB)
Veröffentlichungsdatum dieses Volltextes: 24 Jun 2025 05:57



Zusammenfassung

In recent years, machine learning (ML) has become ubiquitous in sectors including transportation, security, health, and finance to analyze large amounts of data and support decision-making. However, real-world datasets used in ML often exhibit various data quality (DQ) defects that can significantly impair the performance and validity of ML models and thus also the decisions derived from them. ...

plus


Nur für Besitzer und Autoren: Kontrollseite des Eintrags
  1. Universität

Universitätsbibliothek

Publikationsserver

Kontakt:

Publizieren: oa@ur.de
0941 943 -4239 oder -69394

Dissertationen: dissertationen@ur.de
0941 943 -3904

Forschungsdaten: datahub@ur.de
0941 943 -5707

Ansprechpartner