Zusammenfassung
Previous studies in human subjects reported that the parieto- insular vestibular cortex (PIVC), a core area of the vestibular cortex, is inhibited when visual processing is prioritized. However, it has remained unclear which networks in the brain modulate this inhibition of PIVC. Based on previous results showing that the inhibition of PIVC is strongly influenced by visual attention, we here ...
Zusammenfassung
Previous studies in human subjects reported that the parieto- insular vestibular cortex (PIVC), a core area of the vestibular cortex, is inhibited when visual processing is prioritized. However, it has remained unclear which networks in the brain modulate this inhibition of PIVC. Based on previous results showing that the inhibition of PIVC is strongly influenced by visual attention, we here examined whether attention networks in the parietooccipital cortex modulate the inhibition of PIVC. Using diffusion-weighted and resting-state fMRI in a group of female and male subjects, we found structural and functional connections between PIVC and the posterior parietal cortex (PPC), a major brain region of the cortical attention network. We then temporarily inhibited PPC by repetitive transcranial magnetic stimulation (rTMS) and hypothesized that the modulatory influence of PPC over PIVC would be reduced; and, as a result, PIVC would be less inhibited. Subjects performed a visual attentional tracking task immediately after rTMS, and the inhibition of PIVC during attentive tracking was measured with fMRI. The results showed that the inhibition of PIVC during attentive tracking was less pronounced compared with sham rTMS. We also examined the effects of inhibitory rTMS over the occipital cortex and found that the visual-vestibular posterior insular cortex area was less activated during attentive tracking compared with sham rTMS or rTMS over PPC. Together, these results suggest that attention networks in the parietooccipital cortex modulate activity in core areas of the vestibular cortex during attentive visual processing.